Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14565, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421095

RESUMO

AIM: Widely used second-generation antipsychotics are associated with adverse metabolic effects, contributing to increased cardiovascular mortality. To develop strategies to prevent or treat adverse metabolic effects, preclinical models have a clear role in uncovering underlying molecular mechanisms. However, with few exceptions, preclinical studies have been performed in healthy animals, neglecting the contribution of dysmetabolic features inherent to psychotic disorders. METHODS: In this study, methylazoxymethanol acetate (MAM) was prenatally administered to pregnant Sprague-Dawley rats at gestational day 17 to induce a well-validated neurodevelopmental model of schizophrenia mimicking its assumed pathogenesis with persistent phenotype. Against this background, the dysmetabolic effects of acute treatment with olanzapine and haloperidol were examined in female rats. RESULTS: Prenatally MAM-exposed animals exhibited several metabolic features, including lipid disturbances. Half of the MAM rats exposed to olanzapine had pronounced serum lipid profile alteration compared to non-MAM controls, interpreted as a reflection of a delicate MAM-induced metabolic balance disrupted by olanzapine. In accordance with the drugs' clinical metabolic profiles, olanzapine-associated dysmetabolic effects were more pronounced than haloperidol-associated dysmetabolic effects in non-MAM rats and rats exposed to MAM. CONCLUSION: Our results demonstrate metabolic vulnerability in female prenatally MAM-exposed rats, indicating that findings from healthy animals likely provide an underestimated impression of metabolic dysfunction associated with antipsychotics. In the context of metabolic disturbances, neurodevelopmental models possess a relevant background, and the search for adequate animal models should receive more attention within the field of experimental psychopharmacology.


Assuntos
Antipsicóticos , Haloperidol , Acetato de Metilazoximetanol/análogos & derivados , Gravidez , Ratos , Feminino , Animais , Haloperidol/toxicidade , Acetato de Metilazoximetanol/toxicidade , Olanzapina/toxicidade , Ratos Sprague-Dawley , Antipsicóticos/uso terapêutico , Lipídeos , Modelos Animais de Doenças
2.
Eur Neuropsychopharmacol ; 78: 30-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866191

RESUMO

Social and cognitive dysfunctions are the most persistent symptoms of schizophrenia. Since oxytocin (OXT) is known to play a role in social functions and modulates cognitive processes, we investigated the effects of a novel, nonpeptide, selective OXT receptor agonist, LIT-001, in a neurodevelopmental model of schizophrenia. Administration of methylazoxymethanol acetate (MAM; 22 mg/kg) on the 17th day of rat pregnancy is known to cause developmental disturbances of the brain, which lead to schizophrenia-like symptomatology in the offspring. Here, we examined the effects of acutely administered LIT-001 (1, 3, and 10 mg/kg) in MAM-exposed males and females on social behaviour, communication and cognition. We report that MAM-treated adult male and female rats displayed reduced social behaviour, ultrasonic communication and novel object recognition test performance. LIT-001 partially reversed these deficits, increasing the total social interaction time and the number of 'positive', highly-modulated 50 kHz ultrasonic calls in male rats. The compound ameliorated MAM-induced deficits in object discrimination in both sexes. Present results confirm the pro-social activity of LIT-001 and demonstrate its pro-cognitive effects following acute administration.


Assuntos
Pirazóis , Pirrolidinas , Esquizofrenia , Gravidez , Ratos , Feminino , Masculino , Animais , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Ocitocina/farmacologia , Receptores de Ocitocina , Cognição , Acetato de Metilazoximetanol/toxicidade , Modelos Animais de Doenças
3.
Schizophr Res ; 262: 32-39, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922841

RESUMO

Schizophrenia is a neurodevelopmental psychiatric disorder that often emerges in adolescence, is characterized by social dysfunction, and has an earlier onset in men. These features have been replicated in rats exposed to the mitotoxin methylazoxymethanol acetate (MAM) on gestational day (GD) 17, which as adults exhibit behavioral impairments and dopamine (DA) system changes consistent with a schizophrenia-relevant rodent model. In humans, social withdrawal is a negative symptom that often precedes disease onset and DA system dysfunction and is more pronounced in men. Children and adolescents at high-risk for schizophrenia exhibit social deficits prior to psychotic symptoms (i.e., prodromal phase), which can be used as a predictive marker for future psychopathology. Adult MAM rats also exhibit deficient social interaction, but less is known regarding the emergence of social dysfunction in this model, whether it varies by sex, and whether it is linked to disrupted DA function. To this end, we characterized the ontogeny of social and DA dysfunction in male and female MAM rats during the prepubertal period (postnatal days 33-43) and found sex-specific changes in motivated social behaviors (play, approach) and DA function. Male MAM rats exhibited reduced social approach and increased VTA DA neuron activity compared to saline-treated (SAL) males, whereas female MAM rats exhibited enhanced play behaviors compared to SAL females but no changes in social approach or VTA population activity during this period. These findings demonstrate sex differences in the emergence of social and DA deficits in the MAM model, in which females exhibit delayed emergence.


Assuntos
Dopamina , Esquizofrenia , Humanos , Adolescente , Criança , Ratos , Masculino , Feminino , Animais , Dopamina/fisiologia , Esquizofrenia/induzido quimicamente , Roedores , Acetato de Metilazoximetanol/toxicidade , Neurônios , Modelos Animais de Doenças
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445411

RESUMO

BACKGROUND: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). METHODS: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23-P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. RESULTS: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. CONCLUSIONS: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.


Assuntos
Azepinas/administração & dosagem , Acetato de Metilazoximetanol/análogos & derivados , Córtex Pré-Frontal/crescimento & desenvolvimento , Esquizofrenia/fisiopatologia , Triazóis/administração & dosagem , Adolescente , Desenvolvimento do Adolescente/efeitos dos fármacos , Animais , Azepinas/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Acetato de Metilazoximetanol/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteômica , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Caracteres Sexuais , Triazóis/farmacologia
5.
Brain Res ; 1762: 147425, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737065

RESUMO

The amygdala plays a crucial role in anxiety-related behavior and various neuropsychiatric disorders. The offspring of dams, administered methylazoxymethanol acetate (MAM) intraperitoneally at gestational day 15, exhibit micrencephaly and anxiety-related behavior, such as hyperactivity in rearing and crossing behavior, alongside a distinct Fos expression profile in the basolateral (BLA) and central amygdala. However, the histochemical underpinnings of these changes remain to be elucidated. To determine the histochemical alterations in MAM-induced model rats, we performed Nissl staining, immunohistochemistry for parvalbumin (PV) or calbindin (Calb), and immunohistochemistry for PV in conjunction with in situ hybridization for glutamate decarboxylase (GAD). We compared immunoreactivity in the BLA between normal and MAM-induced model rats and observed a significant decrease in the number of PV-positive neurons in MAM-induced model rats; however, no significant differences in the number of Nissl- and Calb-positive neurons were observed. We did not detect any significant between-group differences with regards to the effects of environmental enrichment on the number of PV-positive neurons in the BLA. Double-labeling for GAD and PV revealed that many PV-positive neurons colocalized with digoxigenin-GAD65/67 signals. In addition, GAD/PV double-positive neurons and the total number of GAD-positive neurons in the BLA were lower in the MAM-induced model rats. These results indicate that histochemical alterations observed in the BLA of the MAM-induced model rats may attribute to an aberrant GABAergic inhibitory system.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Acetato de Metilazoximetanol/análogos & derivados , Microcefalia/metabolismo , Parvalbuminas/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/química , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Carcinógenos/toxicidade , Feminino , Neurônios GABAérgicos/química , Neurônios GABAérgicos/efeitos dos fármacos , Interneurônios/química , Interneurônios/efeitos dos fármacos , Masculino , Acetato de Metilazoximetanol/toxicidade , Microcefalia/induzido quimicamente , Microcefalia/psicologia , Parvalbuminas/análise , Gravidez , Ratos , Ratos Sprague-Dawley
7.
Biochem Pharmacol ; 177: 114004, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360362

RESUMO

Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.


Assuntos
Encéfalo/efeitos dos fármacos , Canabidiol/farmacologia , Receptores de Dopamina D3/genética , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/farmacologia , Encéfalo/diagnóstico por imagem , Canabidiol/química , Circulação Cerebrovascular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Haloperidol/química , Haloperidol/farmacologia , Imageamento por Ressonância Magnética , Masculino , Acetato de Metilazoximetanol/toxicidade , Modelos Moleculares , Simulação de Dinâmica Molecular , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Puberdade , Ratos Sprague-Dawley , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
8.
Neuropharmacology ; 170: 108040, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32165218

RESUMO

Social dysfunction is among the core symptoms of schizophrenia. The neuropeptides oxytocin (OXT) and vasopressin (VP) are involved in the regulation of social behaviour and social cognition. There are indications that both of these neurotransmitter systems are altered in schizophrenia. Prenatal (embryonic day 17) exposure to the neurotoxin methylazoxymethanol acetate (MAM; 22 mg/kg) leads to a schizophrenia-like phenotype in rats and has been used as a model of schizophrenia symptoms. Here, we examined the social phenotype of MAM-exposed female and male rats and measured concentrations of OXT, VP and their specific receptors in various brain areas involved in the control of social behaviour. We report decreases in social behaviour and ultrasonic vocalisations (USVs) in the MAM rats during social encounters. Specifically, the duration of social interactions and number of corresponding USVs were reduced in this group. In the MAM rats, "positive" 50-kHz USVs were flatter, i.e., displayed lower bandwidth, a greater percentage of "short" calls and lower percentage of frequency-modulated calls. The MAM animals exhibited diminished interest towards social stimuli in olfactory preference tests. In the resident-intruder test, MAM exposure reduced dominance behaviour only in the males. We also report cognitive impairments, including reduced novel object recognition and cognitive inflexibility in the attentional set shifting test, and decreased OXT and OXT receptor concentrations in the prefrontal cortex and hypothalamus and VP and VP receptors in the hypothalamus in the MAM rats. Deficits in central OXT and VP systems may underlie abnormalities present in the MAM model of schizophrenia.


Assuntos
Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Esquizofrenia/induzido quimicamente , Psicologia do Esquizofrênico , Comportamento Social , Animais , Feminino , Masculino , Acetato de Metilazoximetanol/toxicidade , Neurotoxinas/toxicidade , Ocitocina/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/metabolismo , Esquizofrenia/metabolismo , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
9.
Nicotine Tob Res ; 22(2): 204-212, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30899959

RESUMO

INTRODUCTION: Patients with schizophrenia (SCZ) smoke at a rate of 4-5 times higher than the general population, contributing to negative health consequences in this group. One possible explanation for this increased smoking is that individuals with SCZ find nicotine (NIC) more reinforcing. However, data supporting this possibility are limited. METHODS: The present experiments examined self-administration of NIC, alone or in combination with other reinforcers, across a range of doses in the methylazoxymethanol acetate (MAM) rodent model of SCZ. RESULTS: MAM and control animals did not differ in NIC self-administration across a range of doses and schedules of reinforcement, in both standard 1-hour self-administration sessions and 23-hour extended access sessions. However, MAM animals responded less for sucrose or reinforcing visual stimuli alone or when paired with NIC. CONCLUSIONS: To the extent that MAM-treated rats are a valid model of SCZ, these results suggest that increased NIC reinforcement does not account for increased smoking in SCZ patients. IMPLICATIONS: This study is the first to utilize nicotine self-administration, the gold standard for studying nicotine reinforcement, in the methylazoxymethanol acetate model of schizophrenia, which is arguably the most comprehensive animal model of the disease currently available. Our assessment found no evidence of increased nicotine reinforcement in methylazoxymethanol acetate animals, suggesting that increased reinforcement may not perpetuate increased smoking in schizophrenia patients.


Assuntos
Modelos Animais de Doenças , Acetato de Metilazoximetanol/toxicidade , Nicotina/administração & dosagem , Reforço Psicológico , Esquizofrenia/induzido quimicamente , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Feminino , Masculino , Inibidores da Síntese de Proteínas/toxicidade , Ratos , Ratos Sprague-Dawley , Autoadministração , Sacarose/administração & dosagem
10.
Neuropharmacology ; 153: 82-97, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047919

RESUMO

Glutamate receptors play a crucial pathogenic role in brain damage induced by status epilepticus (SE). SE may initiate NMDAR-dependent excitotoxicity through the production of oxidative damage mediated by the activation of a ternary complex formed by the NMDA receptor, the post-synaptic density scaffolding protein 95 (PSD95) and the neuronal NO synthase (nNOS). The inhibition of the protein-protein-interaction (PPI) of the NMDAR-PSD95-nNOS complex is one of the most intriguing challenges recently developed to reduce neuronal death in both animal models and in patients with cerebral ischemia. We took advantage of this promising approach to verify whether early administration of a neuroprotective NMDAR-PSD95-nNOS PPI inhibitor preserves the brain from SE-induced damage in a model of acquired cortical dysplasia, the methylazoxymethanol (MAM)/pilocarpine rat. Pilocarpine-induced SE rapidly determined neurodegenerative changes mediated by a NMDAR-downstream neurotoxic pathway in MAM rats. We demonstrated that SE rapidly induces NMDAR activation, nNOS membrane translocation, PSD95-nNOS molecular interaction associated with neuronal and glial peroxynitrite accumulation in the neocortex of MAM-pilocarpine rats. These changes were paralleled by rapid c-fos overexpression and by progressive spectrin proteolysis, suggestive of calpain activity and irreversible cytoskeletal damage. Early administration of a cell-penetrating Tat-N-dimer peptide inhibitor of NMDAR-PSD95-nNOS PPI during SE significantly rescued the MAM-pilocarpine rats from SE-induced mortality, reduced the number of degenerating neurons, decreased neuronal c-fos activation, peroxynitrite formation and cytoskeletal degradation and prevented astrogliosis. Our findings suggest an overall neuroprotective effect of blocking PSD95-nNOS protein-protein-interaction against SE insult.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico Sintase Tipo I/metabolismo , Peptídeos/administração & dosagem , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Feminino , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/toxicidade , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Pilocarpina/toxicidade , Gravidez , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/prevenção & controle
11.
Sci Rep ; 9(1): 6062, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988364

RESUMO

Clinical studies consistently report structural impairments (i.e.: ventricular enlargement, decreased volume of anterior cingulate cortex or hippocampus) and functional abnormalities including changes in regional cerebral blood flow in individuals suffering from schizophrenia, which can be evaluated by magnetic resonance imaging (MRI) techniques. The aim of this study was to assess cerebral blood perfusion in several schizophrenia-related brain regions using Arterial Spin Labelling MRI (ASL MRI, 9.4 T Bruker BioSpec 94/30USR scanner) in rats. In this study, prenatal exposure to methylazoxymethanol acetate (MAM, 22 mg/kg) at gestational day (GD) 17 and the perinatal treatment with Δ-9-tetrahydrocannabinol (THC, 5 mg/kg) from GD15 to postnatal day 9 elicited behavioral deficits consistent with schizophrenia-like phenotype, which is in agreement with the neurodevelopmental hypothesis of schizophrenia. In MAM exposed rats a significant enlargement of lateral ventricles and perfusion changes (i.e.: increased blood perfusion in the circle of Willis and sensorimotor cortex and decreased perfusion in hippocampus) were detected. On the other hand, the THC perinatally exposed rats did not show differences in the cerebral blood perfusion in any region of interest. These results suggest that although both pre/perinatal insults showed some of the schizophrenia-like deficits, these are not strictly related to distinct hemodynamic features.


Assuntos
Dronabinol/toxicidade , Acetato de Metilazoximetanol/toxicidade , Neurogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Esquizofrenia/induzido quimicamente , Animais , Técnicas de Observação do Comportamento , Circulação Cerebrovascular/efeitos dos fármacos , Círculo Arterial do Cérebro/diagnóstico por imagem , Círculo Arterial do Cérebro/efeitos dos fármacos , Círculo Arterial do Cérebro/embriologia , Modelos Animais de Doenças , Feminino , Hipocampo/irrigação sanguínea , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Esquizofrenia/diagnóstico , Córtex Sensório-Motor/irrigação sanguínea , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/embriologia
12.
Toxicon ; 155: 49-50, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316979

RESUMO

Cycad-associated neurodegenerative disease is more strongly correlated with the gymnosperm's major neurotoxin cycasin (methylazoxymethanol glucoside) than with the minor neurotoxin ß-N-methylamino-L-alanine (L-BMAA).


Assuntos
Diamino Aminoácidos/toxicidade , Acetato de Metilazoximetanol/análogos & derivados , Doenças Neurodegenerativas/induzido quimicamente , Encéfalo/efeitos dos fármacos , Toxinas de Cianobactérias , Cycas/química , Humanos , Acetato de Metilazoximetanol/toxicidade , Neurotoxinas/toxicidade
13.
Int J Dev Neurosci ; 68: 1-9, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605566

RESUMO

BACKGROUND: Melatonin, which is an antioxidant and neuroprotective agent, can be an effective treatment for neurological disorders. We assessed the effect of melatonin administration on histological changes, antioxidant enzyme levels, and behavioral changes in a neonate mouse model of cortical malformation. MATERIALS AND METHODS: Cortical malformation was induced by two injections of 15 mg/kg methylazoxymethanol (MAM) on gestational day 15 (E15). Pregnant Balb/c mice were randomly divided into the following six groups: Control (CO), Melatonin (MEL), Luzindole (LUZ), MAM, MEL + MAM1 (co-treatment), and MEL + MAM2 (pretreatment). Melatonin was intraperitoneally injected at a dose of 10 mg/kg daily (from E15 until delivery of from E6 for 20 days after delivery). On postnatal day 31, the activity and anxiety of mice were assessed by open field and elevated plus maze tests, respectively. Histopathological changes in the neonate cortex were studied using hematoxylin and eosin staining and neurofilament immunohistochemistry. Enzyme-linked immunosorbent assays were used to measure the activity of nitric oxide (NO), malondialdehyde (MDA), and antioxidant enzymes, including catalase (CAT), super oxide dismutase (SOD), and glutathione peroxidase (GPX). RESULTS: In the behavioral assessment of neonate mice, a significant increase in the crossing activity and decrease in anxiety were recorded in groups treated with MAM plus melatonin. In histological examination, heterotopic, dysmorphic, and ectopic cells, as well as dyslamination, were seen in the MAM and LUZ groups. However, these defects were attenuated in the MAM plus melatonin groups. Significant reductions were recorded in the SOD and GPX levels in the MAM and LUZ groups compared to the control, while the NO level was increased in these groups. Groups that received MAM plus melatonin showed significant increases in the levels of SOD and GPX and a significant decrease in the level of NO, compared to the MAM group. CONCLUSION: Melatonin increased the crossing activity and decreased the anxiety in the treated mice of the neonate mouse model of cortical malformation. Histologically, the administration of exogenous melatonin in pregnant mice and their neonates had a protective effect on the cerebral cortex of neonates. Also, this effect is elicited by decreasing NO and increasing antioxidative enzymes.


Assuntos
Antioxidantes/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/tratamento farmacológico , Melatonina/uso terapêutico , Animais , Animais Recém-Nascidos , Carcinógenos/toxicidade , Catalase/metabolismo , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/metabolismo , Filamentos Intermediários/metabolismo , Malformações do Desenvolvimento Cortical/induzido quimicamente , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Nitroprussiato/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Superóxido Dismutase/metabolismo , Triptaminas/toxicidade
14.
Neurotox Res ; 34(2): 305-323, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29536265

RESUMO

Social isolation (SI) during adolescence may induce schizophrenia-like behavior. In the present study, we investigated whether adolescent SI might affect the development of schizophrenia-like behavior in the MAM-E17 neurodevelopmental model of schizophrenia. Rats were socially isolated for 10 days during adolescence (postnatal days (P) 30-40), followed by resocialization until late adolescence (P45-P48) or early adulthood (P70-P75); behavioral and neurochemical studies were performed at these ages. The behavioral studies analyzed locomotor activity, social interaction, recognition memory, and sensorimotor gating; GAD65 and GAD67 protein levels were measured in the prefrontal cortex. The results showed that SI did not affect locomotor activity, but it prevented the social interaction deficits induced by MAM administration at both of the analyzed age points. However, SI induced a deficit in recognition memory in the MAM group during adolescence, which was not observed in the MAM-treated, socially housed rats at this age. In adulthood, impairments in recognition memory were detected in both MAM groups. In contrast, SI did not accelerate the appearance of sensorimotor gating deficits in MAM animals during adolescence, and sensorimotor gating impairments were observed in both MAM groups during adulthood. Adolescent SI rearing did not affect any examined behavioral responses in the VEH-treated groups. SI altered the levels of GAD65 and GAD67 proteins during adolescence in both groups; however, the decrease in the level of GAD65 protein was observed only in the adult MAM-SI group. Thus, SI rearing during a defined period of adolescence might have specific effects on the emergence of schizophrenia-like abnormalities in MAM-treated animals.


Assuntos
Carcinógenos/toxicidade , Acetato de Metilazoximetanol/análogos & derivados , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Isolamento Social/psicologia , Fatores Etários , Animais , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Relações Interpessoais , Locomoção , Acetato de Metilazoximetanol/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar , Reconhecimento Psicológico , Filtro Sensorial , Estatísticas não Paramétricas
15.
Schizophr Res ; 195: 343-352, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28927551

RESUMO

The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning.


Assuntos
Medo/efeitos dos fármacos , Deficiências da Aprendizagem/etiologia , Acetato de Metilazoximetanol/análogos & derivados , Neurotoxinas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Medo/psicologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Acetato de Metilazoximetanol/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Esquizofrenia/patologia , Fatores de Tempo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/patologia
16.
Congenit Anom (Kyoto) ; 58(1): 16-23, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28464341

RESUMO

Environmental enrichment (EE) mediates recovery from sensory, motor, and cognitive deficits and emotional abnormalities. In the present study, we examined the effects of EE on locomotor activity and neuronal activity in the amygdala in control and methylazoxymethanol acetate (MAM)-induced micrencephalic rats after challenge in a novel open field. Control rats housed in EE (CR) showed reduced locomotor activity compared to rats housed in a conventional cage (CC), whereas hyperactivity was seen in MAM rats housed in a conventional cage (MC) and in MAM rats housed in EE (MR). Novel open field exposure in both CC and MC resulted in a marked increase in Fos expression in the anterior and posterior parts of the basolateral amygdaloid nucleus, basomedial nucleus, and medial nucleus, whereas these increases in expression were not observed in CR. The effect of EE on Fos expression in the amygdala was different in MR exposed to a novel open field compared to CR. Furthermore, we observed a quite different pattern of Fos expression in the central nucleus of the amygdala between control and MAM rats. The present results suggest that neuronal activity in the amygdala that responds to anxiety is altered in MAM rats, especially when the rats are reared in EE. These alterations may cause behavioral differences between control and MAM rats.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Meio Ambiente , Comportamento Exploratório , Locomoção , Microcefalia/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/patologia , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Acetato de Metilazoximetanol/toxicidade , Microcefalia/induzido quimicamente , Microcefalia/genética , Microcefalia/patologia , Neurotoxinas/toxicidade , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Neurochem ; 143(3): 264-267, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28872674

RESUMO

This Editorial highlights an article by Gulchina and colleagues in the current issue of the Journal of Neurochemistry, in which the authors describe molecular and epigenetic changes in the developing prefrontal cortex of the rats exposed to methylazoxymethanol acetate (MAM). They found an NMDAR hypofunction present in the prefrontal cortex of juvenile MAM rats which was associated with abnormal epigenetic regulation of the Grin2b gene. These changes may be related to early cognitive impairments observed in MAM rats and schizophrenia patients.


Assuntos
Epigênese Genética/efeitos dos fármacos , Acetato de Metilazoximetanol/toxicidade , Neurotoxinas/toxicidade , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia/etiologia , Animais , Modelos Animais de Doenças , Feminino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Esquizofrenia/patologia
18.
Psychopharmacology (Berl) ; 234(19): 2837-2857, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28744563

RESUMO

RATIONALE: Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES: We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS: MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS: Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 µg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION: The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.


Assuntos
Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Acetato de Metilazoximetanol/toxicidade , Nootrópicos/uso terapêutico , Desempenho Psicomotor/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Animais , Atenção/efeitos dos fármacos , Atenção/fisiologia , Cognição/fisiologia , Função Executiva/efeitos dos fármacos , Masculino , Neurotoxinas/toxicidade , Nootrópicos/farmacologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Esquizofrenia/induzido quimicamente , Resultado do Tratamento
19.
J Neurochem ; 143(3): 320-333, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28628228

RESUMO

Schizophrenia (SCZ) is characterized not only by psychosis, but also by working memory and executive functioning deficiencies, processes that rely on the prefrontal cortex (PFC). Because these cognitive impairments emerge prior to psychosis onset, we investigated synaptic function during development in the neurodevelopmental methylazoxymethanol (MAM) model for SCZ. Specifically, we hypothesize that N-methyl-D-aspartate receptor (NMDAR) hypofunction is attributable to reductions in the NR2B subunit through aberrant epigenetic regulation of gene expression, resulting in deficient synaptic physiology and PFC-dependent cognitive dysfunction, a hallmark of SCZ. Using western blot and whole-cell patch-clamp electrophysiology, we found that the levels of synaptic NR2B protein are significantly decreased in juvenile MAM animals, and the function of NMDARs is substantially compromised. Both NMDA-mEPSCs and synaptic NMDA-eEPSCs are significantly reduced in prelimbic PFC (plPFC). This protein loss during the juvenile period is correlated with an aberrant increase in enrichment of the epigenetic transcriptional repressor RE1-silencing transcription factor (REST) and the repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-quantitative polymerase chain reaction. Glutamate hypofunction has been a prominent hypothesis in the understanding of SCZ pathology; however, little attention has been given to the NMDAR system in the developing PFC in models for SCZ. Our work is the first to confirm that NMDAR hypofunction is a feature of early postnatal development, with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The selective loss of NR2B protein and subsequent synaptic dysfunction weakens plPFC function during development and may underlie early cognitive impairments in SCZ models and patients. Read the Editorial Highlight for this article on page 264.


Assuntos
Epigênese Genética/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/patologia , Animais , Animais Recém-Nascidos , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas In Vitro , Masculino , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/toxicidade , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Ratos , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/induzido quimicamente , Esquizofrenia/complicações , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
20.
Neurotox Res ; 32(1): 121-133, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28421529

RESUMO

Ketamine may prove to be a potential candidate in treating the widespread drug addiction/substance abuse epidemic among patients with schizophrenia. Clinical studies have shown ketamine to reduce cocaine and heroin cravings. However, the use of ketamine remains controversial as it may exacerbate the symptoms of schizophrenia. Therefore, the aim of this study is to characterize the effects of ketamine on drug addiction in schizophrenia using the methylazoxymethanol (MAM) acetate rat model on operant IV methamphetamine (METH) self-administration. MAM was administered intraperitoneally (22 mg/kg) on gestational day 17. Locomotor activity test and later IV self-administration (IVSA) were then performed in the male offspring followed by a period of forced abstinence and relapse of METH taking. After reaching stable intakes in the relapse phase, ketamine (5 mg/kg) was administered intraperitoneally 30 min prior to the self-administration session. As documented previously, the MAM rats showed a lack of habituation in the locomotor activity test but developed stable maintenance of METH self-administration with no difference in operant behaviour to control animals. Results show that ketamine treatment significantly reduced the METH intake in the control animals but not in MAM animals. Ketamine effect on METH self-administration may be explained by increased glutamatergic signalling in the prefrontal cortex caused by the N-methyl-D-aspartate antagonism and disinhibition of GABA interneurons which was shown to be impaired in the MAM rats. This mechanism may at least partly explain the clinically proven anti-craving potential of ketamine and allow development of more specific anti-craving medications with fewer risks.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Ketamina/farmacologia , Metanfetamina/administração & dosagem , Acetato de Metilazoximetanol/análogos & derivados , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Análise de Variância , Animais , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Ketamina/toxicidade , Locomoção/efeitos dos fármacos , Acetato de Metilazoximetanol/toxicidade , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...